메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Bo-Kyung Yoon (Ulsan National Institute of Science and Technology) Jee-Hoon Jung (Ulsan National Institute of Science and Technology) Jeong Min Baik (Ulsan National Institute of Science and Technology) Katherine A. Kim (National Taiwan University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2019-ECCE Asia
발행연도
2019.5
수록면
2,107 - 2,113 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the internet of things (IoT) gains popularity, many sensors and devices for a variety of applications need to be powered. Energy harvesting produces electric power from surrounding energy and is the key to powering many IoT devices. A triboelectric nanogenerator (TENG) is a newly-introduced device that harvests electric energy from vibrational energy using the principle of electrostatic energy. Here, the characteristics of the TENG are determined to model and simulate under realistic operation using derating factors. Simulations using the ideal TENG’s circuit model diverge significantly from the actual experimental results. Thus, derating factors are introduced to minimize error between simulation and experimental results. Derating factors of the internal voltage source and the capacitor of the TENG are defined and swept over a range of values to find the values that best fit to the experimental results. For the contact-mode TENG, a voltage derating of 0.0054 and capacitor derating value of 1 resulted in the lowest error in terms of power output. The comparison of the simulation and experiment shows that the they are matched with an error of 1.14×10<SUP>-13</SUP> A for current, 0.157 V for voltage, and 3.81×10<SUP>-13</SUP> W for power.

목차

Abstract
I. INTRODUCTION
II. TENG CIRCUIT MODEL
III. EXPERIMENTAL MEASUREMENTS
IV. TENG SIMULATION
V. SIMULATION AND EXPERIMENT COMPARISON
VI. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0