메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍병선 (고려대학교) 박지혁 (고려대학교) 최명진 (고려대학교) 김창헌 (고려대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제25권 제3호
발행연도
2019.07
수록면
105 - 113 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
물리 기반 유체 시뮬레이션은 고해상도 연산을 위해 많은 시간이 필요하다. 이 문제를 해결하기 위해 저해상도 유체 시뮬레이션의 한계를 딥 러닝으로 보완하는 연구들이 있으며, 그중에서는 저해상도의 시뮬레이션 데이터를 고해상도로 변환해주는 Super-resolution 분야가 있다. 하지만 기존 기법들은 전체 데이터 공간에서 밀도 데이터가 없는 부분까지 연산하므로 전체 시뮬레이션 속도 면에서 효율성이 떨어지며, 입력 해상도가 큰 경우에는 GPU 메모리가 부족해 연산할 수 없는 경우가 발생할 수 있다. 본 연구에서는 공간 분할 법 중 하나인 쿼드 트리를 활용하여 시뮬레이션 공간을 분할 및 분류하여 Super-resolution 하는 기법을 제안한다. 본 기법은 필요 공간만 Super-resolution 하므로 전체 시뮬레이션 가속화가 가능하고, 입력 데이터를 분할 연산하므로 GPU 메모리 문제를 해결할 수 있게 된다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. Method
4. 실험 및 분석
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000901083