메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장원두 (동명대학교) 양영준 (동명대학교) 최성진 (동명대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제22권 제4호
발행연도
2019.4
수록면
455 - 462 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a method of utilizing convolutional neural network to classify the images of Bender Gestalt Test (BGT), which is a tool to understand and analyze a person’s characteristic. The proposed network is composed of 29 layers including 18 convolutional layers and 2 fully connected layers, where the network is to be trained with augmented images. To verify the proposed method, 10 fold validation was adopted. In results, the proposed method classified the images into 9 classes with the mean f1 score of 97.05%, which is 13.71%p higher than a previous method. The analysis of the results shows the classification accuracy of the proposed method is stable over all the patterns as the worst f1 score among all the patterns was 92.11%.

목차

ABSTRACT
1. 서론
2. 연구 방법
3. 실험 결과 및 고찰
4. 결론 및 향후 연구
REFERENCE

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000895322