메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강량경 (Kangwon National University) 석호식 (Kangwon National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제2호
발행연도
2019.6
수록면
448 - 453 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
모바일 앱의 신뢰성 향상과 개발 환경 변화라는 제약 조건을 모두 만족시키려면 모바일 앱의 동작을 자동으로 검증할 필요가 있다. 모바일 앱의 동작 검증 과정에서 다양한 이슈가 발생하나, 사용 상태 변화 탐지도 중요한 이슈 중 하나이다. 본 논문에서는 모바일 앱의 사용 상태 변화 탐지를 위하여 딥뉴럴넷을 이용하여 모바일 앱 GUI의 UI 위젯을 인식한 후 인식된 위젯간의 관계를 그래프로 변환하고, 변환된 그래프의 그래프 엔트로피를 계산하여 사용 상태 변화를 감지하는 방법을 제안한다. 제안 방법은 SIFT(Scale-Invariant Feature Transform)에 기반한 감지 방법과 비교되었으며 20개의 실제 모바일 앱의 동작 데이터를 통해 검증한 결과 대부분의 경우 제안 방법이 우수하나, 엔트로피 계산이 어려울 때는 제안 방법의 성능이 저하됨을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. GUI정보에 기반한 사용상태 변화탐지
Ⅵ. 실험결과 및 분석
Ⅴ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0