메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조윤정 (중앙대학교) 김유미 (상지대학교) 함승우 (한국원자력의학원) 최준영 (원광보건대학교) 백설경 (아주대학교병원) 강성홍 (인제대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제4호
발행연도
2019.4
수록면
435 - 447 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
불필요한 재입원을 예방하기 위해서는 재입원 확률이 높은 집단을 집중적으로 관리할 필요가 있다. 이를 위해서는 재입원 예측모형의 개발이 필요하다. 재원예측 모형을 개발하기 위해 1개 대학병원의 2016년에서 2017년의 2년간의 퇴원요약환자 데이터를 수집하였다. 이때 재입원 환자는 연구 기간 내에 2번 이상 퇴원한 환자라 정의 하였다. 재입원환자의 특성을 파악하기 위해 기술통계와 교착분석을 실시하였다. 재입원 예측 모형개발은 데이터마이닝 기법인 로지스틱회귀모형, 신경망, 의사결정모형을 이용하였다. 모형평가는 AUC(Area Under Curve)를 이용하였다. 로지스틱회귀모형이 AUC가 0.81로 가장 우수하게 나옴에 따라 본 연구에서는 로지스틱 회귀모형을 최종 재입원 예측 모형으로 선정을 하였다. 로지스틱회귀모형에서 선정된 재입원에 영향을 끼치는 주요한 변수는 성별, 연령, 지역, 주진단군, Charlson 동반질환지수, 퇴원과, 응급실 경유 여부, 수술여부, 재원일수, 총비용, 보험종류 등이었다. 본 연구에서 개발한 모형은 1개병원의 2년치 자료이므로 일반화하기에는 제한점이 있다. 추후에 여러 병원 장기간의 데이터를 수집하여 일반화 할 수 있는 모형을 개발하는 것이 필요하다. 더 나아가 계획에 없던 재입원 까지 예측을 할 수 있는 모형을 개발하는 것이 필요하다.

목차

요약
Abstract
1. 서론
2. 연구방법
3. 연구결과
4. 고찰
5. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000796784