메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Euihwan Han (Soongsil University) Hyungtai Cha (Soongsil University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.2
발행연도
2019.4
수록면
100 - 107 (8page)
DOI
10.5573/IEIESPC.2019.8.2.100

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, there has been increasing interest in artificial intelligence and machine learning, where sentiment analysis has received considerable attention. In several studies, emotional states have been recognized using audio, text, or bio-signals that induce emotions, with audio being the most typical. There are several audio features, such as rhythm, dynamics, melody, harmony, and tonal color. The aim of our paper is finding critical audio features for effective emotion recognition. To do this, we select the existing audio features from elements of music, and investigate critical features using an iterative feature extraction method. For objective evaluation, the International Affective Digital Sounds system was used for training and testing. Crossvalidation evaluated the method in terms of classifier accuracy and computational complexity, and the results indicate the critical features for emotion classification.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Scheme
4. Performance Evaluation
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0