메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung-Hoon Lee (Gyeongsang Nat’l University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제68권 제3호
발행연도
2019.3
수록면
460 - 470 (11page)
DOI
10.5370/KIEE.2019.68.3.460

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays the integral action has been augmented to the VSS(variable structure system) or SMC(sliding mode control) to improve the control performance. In this note, for the integral sliding mode control(ISMC) of SI(single input) uncertain nonlinear systems, a complete proof of Utkin"s theorem is presented. The Utkin’s invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods is proved clearly, comparatively, and completely for the ISMC of SI uncertain nonlinear systems. With respect to the sliding surface and control input transformations, the equation of the sliding mode i.e., the integral sliding surface is invariant, which is proved completely. During the proof, the guideline for obtaining the ideal sliding dynamics of the integral sliding surface is provided and by using the solution of the ideal sliding dynamics the controlled output is predictable, which is shown in the design example and simulation study, and the design rule of the nonlinear feedback gains of the ISMC are proposed. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of the two nonlinear transformation methods, the same results can be obtained.

목차

Abstract
1. Introduction
2. Main Results of Proof of Utkin“s Theorem
3. Design Examples and Simulation Studies
4. Conclusions
References

참고문헌 (39)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-560-000480928