메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍석준 (충북대학교) 이연규 (충북대학교) 조제일 (국방과학연구소) 이상길 (동아방송예술대학교) 서보석 (충북대학교)
저널정보
한국전자파학회 한국전자파학회논문지 韓國電磁波學會論文誌 第30卷 第2號(通卷 第261號)
발행연도
2019.2
수록면
132 - 140 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 수신된 레이다 신호의 특징 파라미터 데이터에 기계학습 방법을 적용하여 위협 형태에 따라 레이다 신호를 분류하는 방법을 제시한다. 현재 군에서는 위협 신호를 파악하기 위해 특징 파라미터값들과 위협 형태의 대응관계를 나타내는 라이브러리를 이용한다. 라이브러리를 이용한 방법은 새로운 위협이나 기존 라이브러리에 존재하지 않는 위협 형태에 대해서 레이다 신호를 분류하기 어렵고 위협 형태를 파악하는데 문제가 있다. 이 논문에서는 라이브러리 없이 특징 파라미터 데이터만을 이용하여 위협 형태에 따라 레이다 신호를 분류하는 방법을 제안하고자 한다. 분류기로는 CNN(convolutional neural network)을 사용하며, 기계학습을 적용하여 훈련시킨다. 제안 방법은 라이브러리를 사용하지 않음으로써 새로운 위협 신호나 기존의 라이브러리에 존재하지 않는 위협 신호도 적응적으로 분류할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 라이브러리를 이용한 기존의 레이다 신호 분류 방법
Ⅲ. CNN을 이용한 레이다 신호 분류
Ⅳ. 모의실험 결과
Ⅴ. 결론
References

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-427-000465332