메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노건 (프람트테크놀로지) 전종훈 (명지대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제24권 제1호
발행연도
2019.2
수록면
121 - 137 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
비식별화는 데이터셋으로부터 개인정보를 제거함으로써 개인을 식별할 수 없도록 하는 방법으로, 정보를 수집, 가공, 저장, 배포하는 과정에서 발생할 수 있는 개인정보 노출 위험도를 낮추기 위해 사용한다. 그간 비식별화와 관련된 알고리즘, 모델 등의 관점에서 많은 연구가 이루어졌지만, 대부분은 정형 데이터를 대상으로 하는 제한적인 연구로, 비정형 데이터에 대한 고려는 상대적으로 많지 않은 실정이다. 특히 비정형 텍스트가 빈번히 사용되는 의료 분야의 경우에서는 개인 식별 정보들을 단순 제거함으로써 개인정보 노출 위험도는 낮추지만, 그에 따른 데이터 활용성이 떨어지는 점을 감수하는 실정이다. 본 연구는 개인정보 보호 이슈가 가장 중요하고 따라서 비식별화가 활발하게 연구되고 있는 의료분야 데이터 중 비정형 텍스트를 대상으로 k-익명성 보호모델을 적용한 비식별화 수행 방안을 제시하고, 비식별화 결과에 대한 새로운 유용도 측정 기법을 제안하여 이를 통해 직관적으로 데이터 활용성을 판단할 수 있도록 하는 것을 목표로 한다. 따라서 본 연구의 결과물이 의료 분야뿐만 아니라 비정형 텍스트가 활용되는 모든 산업 분야에서 활용될 경우, 개인 식별 정보가 포함된 비정형 텍스트의 활용도를 향상시킬 수 있을 것으로 기대한다.

목차

초록
ABSTRACT
1. 연구 개요
2. 비식별화(De-identification)
3. 필요성 및 유사 연구
4. 연구 실험 및 결과
5. 결론 및 향후 연구
References

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0