메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pangjia (인하대학교) Seunghyun Ko (인하대학교) Yang Fang (인하대학교) Geun-sik Jo (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.1
발행연도
2019.1
수록면
15 - 21 (7page)
DOI
10.5626/JOK.2019.46.1.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 원문 폰트를 특정한 아날로그 폰트 스타일로 변환하는 타이포그래피 변환 문제에 대해 연구한다. 타이포그래피 변환 문제를 해결하기 위해 이 문제를 이미지와 이미지 번역 문제로 치환하고 GAN을 기반으로 한 언밸런스 형 u-net 아키텍처를 제안한다. 기존의 밸런스 형 u-net과는 달리 제안하는 아키텍처는 언밸런스 형 u-net을 포함한 두 개의 서브넷으로 구성된다. (1)언밸런스 형 u-net은의미 및 구조 정보를 유지하면서 특정 글꼴 스타일을 다른 스타일로 변환한다. (2) GAN은 L1 손실, 상수손실 및 원하는 목표 글꼴을 생성하는 데 도움이 되는 이진 GAN 손실을 포함하는 복합 손실 함수를 사용한다. 실험결과 제안하는 모델인 언밸런스 형 u-net이 밸런스 형 u-net 보다 cheat loss에서 빠른 수렴속도와 안정적인 트레이닝 손실을 보였고 generate loss에서 트레이닝 손실을 안정적으로 줄여서 모델 성능 하락 문제를 해결하였다.

목차

요약
Abstract
1. Introduction
2. Related Work
3. Proposed Method
4. Experiments
5. Conclusion
Reference

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0