메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Swe Swe Aung (University of the Ryukyus) Itaru Nagayama (University of the Ryukyus) Shiro Tamaki (University of the Ryukyus)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.6
발행연도
2018.12
수록면
413 - 423 (11page)
DOI
10.5573/IEIESPC.2018.7.6.413

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As we know, machine learning algorithms are powerful tools for a variety of application domains, giving widely divergent dimensions, such as reliability, precision, robustness, high-speed solutions, etc. Likewise, the other critical dimension that a well-designed learning algorithm should occupy is strength against unpredictable and phenomenal noise. For this critical dimension, we introduce a new approach, dual k-nearest neighbors (dual-kNN), to investigate the tolerance level for mislabeling based on different injected-noise levels. Literally, dual-kNN is a reborn algorithm of k-nearest neighbors (k-NN) aiming to reduce the influence of a steady decrease in prediction accuracy over increasing k values. What is more, dual-kNN is proven to have higher classification accuracy in many application domains. For the primary goal of this paper, we mainly emphasize investigating dual-kNN’s resistance level to mislabeled classes. Provably, our empirical experimentations describe how dual-kNN has a higher resistance level to mislabeling than normal k-NN, density-based kNN, and logistic regression, for noise levels of up to 50%. The practical datasets applied within this paper are medical data files from the University of California, Irvine (UCI) Machine Learning Repository.

목차

Abstract
1. Introduction
2. Related Work
3. Mislabeled Dataset Generation
4. Importance of Noise Resistance
5. K-Nearest Neighbors
6. Density-based kNN
7. Dual-kNN
8. Logistic Regression
9. Medical Diagnosis Problems
10. Experiments and Results
11. Conclusion
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000333394