메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김삼근 (한경대학교) 오택일 (한경대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제19권 제11호
발행연도
2018.11
수록면
310 - 318 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 사물인터넷(IoT)의 등장으로 인터넷에 연결된 다양한 기기들에 의해 대규모의 데이터가 생성됨에 따라 빅데이터 분석의 중요성이 증가하고 있다. 특히 실시간으로 생성되는 대규모의 IoT 스트리밍 센서 데이터를 분석하여 새로운 의미있는미래 예측을 통해 다양한 서비스를 제공하는 것이 필요하게되었다. 본 논문은 AWS를 활용하여 IoT 센서로부터 생성되는 스트리밍 데이터에 기반하여 실시간 실내 PM10 농도 예측 LSTM 모델을 제안한다. 또한 제안 모델에 따른 실시간 실내 PM10 농도 예측 서비스를 구축한다. 논문에 사용된 데이터는 PM10 IoT 센서로부터 24시간 동안 수집된 스트리밍 데이터이다. 이를 LSTM의 입력 데이터로 사용하기 위해 PM10 시계열 데이터로부터 30개의 연속된 값으로 이루어진 시퀀스 데이터로 변환한다. LSTM 모델은 바로 인접한 공간으로 이동해 가는 슬라이딩 윈도우 프로세스를 통하여 학습한다. 또한 모델의 성능 개선을 위해 24시간마다 수집한 스트리밍 데이터에 대해 점진적 학습 방법을 적용한다. 제안한 LSTM 모델의 성능을 평가하기 위해 선형회귀 모델 및 순환형 신경망(RNN) 모델과 비교한다. 실험 결과는 제안한 LSTM 예측 모델이 선형 회귀보다 700%, RNN 모델보다는 140% 성능 개선이 있음을 보여주었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 예측 모델
4. 데이터 셋
5. LSTM 기반 PM10 농도 예측 모델
6. 실험 및 평가
7. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000185932