메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Misbawu Adam (Wuhan University of Technology) Yuepeng Chen (Wuhan University of Technology) Xiangtian Deng (Wuhan University of Technology)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.18 No.6
발행연도
2018.11
수록면
1,889 - 1,900 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.

목차

Abstract
I. INTRODUCTION
II. SYSTEM ARCHITECTURE MODEL
III. PROPOSED FCS-MPC STRATEGY FOR CURRENT CONTROL
IV. SIMULATION AND EXPERIMENTAL PERFORMANCE EVALUATION
V. CONCLUSIONS
REFERENCES

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-560-000047898