메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Jisun (University of Seoul) Kwon, Jay Hyoun (University of Seoul) Lee, Hungkyu (Changwon National University) Park, Jong Soo (University of Seoul)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제36권 제5호
발행연도
2018.10
수록면
403 - 412 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, GNSS (Global Navigation Satellite System)-derived orthometric height determination has been studied to improve the time and cost-effectiveness of traditional leveling surveying. However, the accuracy of this new survey method was evaluated when unknown points are located lower than control points. In this study, the accuracy of GNSS-derived orthometric height was examined using TPs (Triangulation Points) to verify the stability of surveying in mountainous areas. The GNSS survey data were obtained from Mungyeong, Unbong/Hadong, Uljin, and Jangseong. Three unknown points were surrounded by more than three UCPs (Unified Control Points) or BMs (Benchmarks) following the guideline for applying GNSS-derived orthometric height determination. A newly developed national geoid model, KNGeoid17 (Korean National Geoid 2017), has been applied for determining the orthometric height. In comparison with the official orthometric heights of the TPs, the heights of the unknown points in Mungyeong and Unbong/Hadong differ by more than 20 cm. On the other hand, TPs in Uljin and Jangseong show 15 ̶16 cm of local bias with respect to the official products. Since the precision of official orthometric heights of TPs is known to be about 10 cm, these errors exceed the limit of the precision. Therefore, the official products should be checked to offer more reliable results to surveyors. As an alternative method of verifying accuracy, three different GNSS post-processing software were applied, and the results from each software were compared. The results showed that the differences in the whole test areas did not exceed 5 cm. Therefore, it was concluded that the precision of the GNSS-derived orthometric height was less than 5 cm, even though the unknown points were higher than the control points.

목차

Abstract
1. Introduction
2. Methodology
3. Accuracy Analysis of GNSS-derived Orthometric Height
4. Conclusion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0