메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyeong Min Jeong (Inha University) Byung Cheol Song (Inha University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.5
발행연도
2018.10
수록면
342 - 349 (8page)
DOI
10.5573/IEIESPC.2018.7.5.342

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In a bad weather environment, the existing road object–detection algorithms using deep learning seldom properly detect road objects in fog, rain, and/or snow. This is due to the lack of data on bad weather environments in the well-known training data, but there is little or no bad weather data that can actually be employed. In this paper, we propose a method to synthesize rain in road images as training data for road object detection in bad weather environments. The proposed method is composed of fog synthesis and rain streak generation. The fog synthesis step estimates and corrects the fog transmission value using depth information from a clear image, and expresses a fog-like feature of the real road image through Gaussian filtering and temporal filtering. We also generate rain streaks using the Unity3D program. We experimented with detecting road objects by learning synthesized rainy images and original rain-free images before synthesis, and compared the two results. Thus, we confirmed that learning with rain-synthesized images improves the detection rate by up to 53%. Experimental results also show that the proposed method can improve vehicle detection performance by about 3.5%, even with real, rainy videos.

목차

Abstract
1. Introduction
2. Related Works
3. Proposed Method
4. Experimental Results
5. Conclusion
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000114473