메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Geng Chen (North China Electric Power University) Youping Tu (North China Electric Power University) Cong Wang (North China Electric Power University) Yi Cheng (North China Electric Power University) Han Jiang (North China Electric Power University) Hongyang Zhou (North China Electric Power University) Hua Jin (North China Electric Power University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.13 No.6
발행연도
2018.11
수록면
2,402 - 2,411 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fluoronitriles-CO₂ gas mixtures are promising alternatives to SF6 in environmentallyfriendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-CO₂ mixture was obtained and compared with those of GILs filled with CO₂ and SF6. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-CO₂ gas mixture was better than that of CO₂ but worse than that of SF₆. When compared with SF6, use of the Fluoronitriles-CO₂ gas mixture caused a reduction in the GIL’s current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-CO₂ gas mixtures.

목차

Abstract
1. Introduction
2. Simulation Model
3. Results
4. Analysis on Current-Carrying Capacity
5. Conclusion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-560-003535742