메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad-Taghi Faghihi-Nezhad (University of Qom) Behrouz Minaei-Bidgoli (Iran University of Science and Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.3
발행연도
2018.9
수록면
479 - 496 (18page)
DOI
10.7232/iems.2018.17.3.479

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AI-based models have shown that stock market is predictable despite its uncertainty and fluctuating nature. Research in this field has further dealt with predicting the next step price amount and less attention has been paid to the prediction of the next movement of price. However, in practice, the necessary requisite for decision-making and use of the results of prediction lies in considering the predictable trend of stock movement along with predicting stock price. Considering the widespread search in the literature on the matter, this paper takes into account, for the first time, two criteria of direction and price simultaneously for the prediction of the stock price. The proposed model has two stages and is developed based on ensemble learning and meta-heuristic optimization algorithms. The first stage predicts the direction of the next price movement. At the second stage, such prediction and other input variables create a new training dataset and the stock price is predicted. At each stage, in order to optimize the results, genetic algorithm (GA) optimization and particle swarm optimization (PSO) are applied. Evaluation of the results, on the real data of stock price, indicates that the proposed model has higher accuracy than other models used in the literature.

목차

ABSTRACT
1. INTRODUCTION AND LITERATURE REVIEW
2. DEVELOPMENT OF AN INTELLIGENT ENSEMBLE-BASED MODEL FOR STOCK PRICE PREDICTION
3. EXPERIMENTAL RESULTS
REFERENCES

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0