메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wang Qinghua (PetroChina Research Institute of Petroleum Exploration and Development) Zou Honglan (PetroChina Research Institute of Petroleum Exploration and Development) Luo Wei (Yangtze University) Yang Junzheng (PetroChina Research Institute of Petroleum Exploration and Development) Wen Xiaohong (PetroChina Research Institute of Petroleum Exploration and Development) Wang Yan (PetroChina Research Institute of Petroleum Exploration and Development)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.11 No.3
발행연도
2018.9
수록면
255 - 264 (10page)
DOI
10.5293/IJFMS.2018.11.3.255

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Horizontal gas-liquid two-phase flow is of crucial importance in oil-gas storage and transportation. In view of previous researches with the lack of horizontal gas-liquid two-phase flow in medium-diameter pipes (60-75 ㎜), experiments were conducted in DN 60 and DN75 at medium-high liquid velocity (50-250 m3/d) and high gas-liquid ratio (20-500 m3/m3). Comparison between flow patterns maps in DN60 and DN75 and the Taitel-Dukler model showed that only flow patterns map in DN60 agreed well. On the basis of experimental data analysis, variation laws of liquid holdup and pressure drop were determined. Besides, this paper developed a method to predict liquid holdup and pressure drop through BP neural networks. Results proved the capability of BP neural networks. The further validation can be made in practical applications.

목차

Abstract
1. Introduction
2. Experiments and Data Analysis
3. Prediction of liquid holdup and pressure drop through BP neural networks
4. Conclusions
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0