메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaoguang Zhang (North China University of Technology) Benshuai Hou (Beijing Shougang International Engineering Technology Co., Ltd) Yikang He (North China University of Technology) Dawei Gao (Tsinghua University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.18 No.5
발행연도
2018.9
수록면
1,369 - 1,379 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a model predictive torque control (MPTC) without the use of a weighting factor for surface mounted permanentmagnet synchronous machine (SPMSM) drive systems is presented. Firstly, the desired voltage vector is predicted in real time according to the principles of deadbeat torque and flux control. Then the sector of this desired voltage vector is determined. The complete enumeration for testing all of the feasible voltage vectors is avoided by testing only the candidate vectors contained in the sector. This means that only two voltage vectors in the sector need to be tested for selecting the optimal voltage vector in each control period. Thus, the calculation time can be reduced when compared with the conventional enumeration method. On the other hand, a novel cost function that only includes the dq-axis voltage errors between the desired voltage and candidate voltage is designed to eliminate the weighting factor used in the conventional MPTC. Thus, the control complexity caused by the tuning of the weighting factor is effectively decreased when compared with the conventional MPTC. Simulation and experimental investigation have been carried out to verify the proposed method.

목차

Abstract
I. INTRODUCTION
II. SPMSM MATHEMATICAL MODEL
III. CONVENTIONAL MODEL PREDICTIVE TORQUE CONTROL
IV. MODEL PREDICTIVE TORQUE CONTROL WITHOUT THE WEIGHTING FACTOR
V. SIMULATION AND EXPERIMENTAL RESULTS
VI. CONCLUSIONS
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0