메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영수 (Korea Air Force Academy)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제21권 제8호
발행연도
2018.8
수록면
858 - 863 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we propose and implement a multi-level convolutional neural network (CNN) algorithm to identify the sexually explicit and lewdness of various image files, and verify its effectiveness by using unauthorized image files generated in the actual military. The proposed algorithm increases the accuracy by applying the convolutional artificial neural network step by step to minimize classification error between similar categories. Experimental data have categorized 20,005 images in the real field into 6 authorization categories and 11 non-authorization categories. Experimental results show that the overall detection rate is 99.51% for the image files. In particular, the excellence of the proposed algorithm is verified through reducing the identification error rate between similar categories by 64.87% compared with the general CNN algorithm.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 다중 레벨 컨볼루션 신경망 알고리즘
4. 비인가 이미지 파일 탐지 시스템
5. 실험 및 결과 분석
6. 결론 및 향후과제
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003404394