메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국강구조학회 한국강구조학회지 한국강구조학회지 제4권 제1호
발행연도
1992.3
수록면
143 - 154 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A considerable amount of research work, therefore, has been under progress regarding the elastic behavior of laminated composites, particularly thin plates. The problem of such a plate has been studies by several people. Some of them include J.R. Vinson, J.M. Whitney, A.W. Leissa, J.E. Ashton and so on. In this paper, some methods of analysis of generally anisotropic laminated curved plates including the effects of transverse shear deformation are given. The boundary conditions are clamped. When the length of the plate is great as compared with its thickness, conventional methods of structural analysis can be employed. But if the length of the plate is short compared with its thickness, no analytical solution seems to be feasible. One of the practical methods of analysis of such problem is the finite difference technique. When this technique is used to solve this problem, it is desirable to reduce the order of the derivatives in order to minimize the number of the pivotal points involved in each equation. This purpose can be accomplished with relative ease. The fourth-order partial differential equation of plate bending is replaced by an equivalent three of second-order partial differential equations with three dependant variables, namely the deflection and the slope deflections. The finite difference technique is then applied to transform these differential equations into sets of linear algebraic equations. In order to solve the resulting matrix equation with a large number of unknowns, a special scheme is used in programing for the computer.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003647789