메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Satyabrata Aich (Inje University) Kiwon Choi (Inje University) Kim Hee-Cheol (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2018 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.10 No.1
발행연도
2018.6
수록면
355 - 358 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The aim of the paper is to discriminate the Parkinson’s disease(PD) from other nerological diseases such as Amyotrophic Lateral Sclerosis (ALS), Huntington’s disease (HD),using different feature selction technique such as Prinicipal Componet Analysis and Recursive Feature Elimination, and also different classification approaches that includes linear classifiers,nonlinear classifiers,and Probabilistic classifier. Mostly the neurological disease affect the brain cells and spinal cords and that lead to the abnormality in the gait behaviour.Recetly the gait analysis caught much attention for predciting the neurological diseases such as PD, ALS and HD.With the advent of intelligent machine learning technique an attempt has been made in this paper to discriminate the PD from other neurological patients. In this paper the gait dynamics data of pateints suffered with PD,ALS and HD has been collected from the public database and a binary classification approach has been used by taking PD as one group and ALS+HD as the other group.Our results founds highest accuracy of 96.78% using SVM with Radial Basis Function(RBF) combined with reduced feature sets obtained from RFE compared to the other classifiers with feature sets from PCA.The result provided enough evidence that can asssit medical practitioners to distinguish PD from other neurological diseases by using the gait dynamics data.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. METHODOLOGY
Ⅲ. RESULTS AND DISCUSSION
Ⅳ. OUTCOME AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003100793