메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jinwoo Jeong (Korea Electronics Technology Institute) Sungjei Kim (Korea Electronics Technology Institute) Yong-Hwan Kim (Korea Electronics Technology Institute)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.3
발행연도
2018.6
수록면
210 - 220 (11page)
DOI
10.5573/IEIESPC.2018.7.3.210

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
High Efficiency Video Coding (HEVC) intra coding achieves significant improvements in coding efficiency compared with H.264/AVC intra coding by adopting 35 spatial intra prediction modes and a quadtree-based block partitioning structure. However, the encoding complexity is extremely high from performing rate-distortion optimization (RDO) on each mode and depth level. This paper proposes fast intra mode decision algorithms for real-time HEVC encoding. For a fast intra prediction mode decision, we estimate the lower bound on the rate-distortion (RD) cost of a prediction unit with non–most-probable modes (non-MPMs). If the RD cost of the MPM is lower than the lower bound, the MPM is selected as the best mode. For a fast intra coding unit (CU) size decision, we predict the RD cost of four split sub-CUs from the RD of the current CU using the relationship between the RDs of the current CU and its split sub-CUs. In the HEVC Test Model software, the proposed algorithm saves 48.56% of the encoding time, on average, while the RD loss is only 0.59%. In x265, the proposed algorithm improves the encoding speed to 71.95 fps, on average, from 49.46 fps. It achieves 1.8 times faster speed with a bit increase of only 0.44%, compared to x265.

목차

Abstract
1. Introduction
2. The Proposed Fast Intra Prediction Mode Decision
3. The Proposed Fast Intra CU Size Decision
4. Experimental Results
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-003112395