메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현종 (동아대학교) 이태헌 (동아대학교) 유승의 (동아대학교) 김나랑 (동아대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제23권 제3호
발행연도
2018.6
수록면
13 - 24 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정부 및 공공기관에 있어 시민의 직접적인 요구사항이 담겨 있는 민원은 정책 개발을 위한 중요한 데이터로 활용이 가능하다. 그러나 민원 데이터는 비정형 텍스트로 작성되어 있는 특성으로 인해 일반적인 텍스트 마이닝 기법으로는 시민의 요구사항을 정확히 도출하기 어려웠다. 이에 본 연구에서는 민원 데이터 분석을 위한 텍스트 마이닝 기법을 개선하여, 시민의 요구사항을 도출할 수 있는 방법을 제시하고자 하였다. 새로운 텍스트 마이닝 기법은 공기어구조맵의 원리에 착안하여 연관성 분석을 2단계로 실시하여 핵심주제어를 기반으로 1차 연관 단어 와 2차 연관 단어로 구조화하였다. 분석을 위해 2016년 1년간 부산시 민원게시판에 올라온 3004건을 활용하였다. 분석 결과는 빈도수와 핵심주제어를 가지고 연관성 분석만으로는 찾을 수 없었던 민원 상의 문제를 본연구에서 제시한 계층적 연관성 분석을 이용하여 시민의 요구사항을 더욱 정확하게 파악할 수 있었다. 본 연구는 민원 데이터에서 시민의 요구사항을 도출하기 용이한 방법을 제안하였다는 학문적 기여점이 있으며, 행정기관에서 민원 데이터를 통해 정책 개발에 활용할 수 있다는 실무적 기여점이 있다.

목차

요약
Abstract
1. 서론
2. 이론적 배경
3. 단어 연관성의 계층적 분석 방법론
4. 전자 민원 분석 사례
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003117015