메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yunbeom Seo (Dankook University) Changha Hwang (Dankook University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.37 No.1
발행연도
2018.5
수록면
65 - 71 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As bitcoin attracts public attention as a new method of investment, the bitcoin market becomes a field of research that should be technically analyzed. Since bitcoin market is very uncertain, time series associated with bitcoin prices are complex, nonstationary and chaotic. In this paper, we attempt to predict bitcoin market trend using deep neural network (DNN) and four types of recurrent neural networks (RNNs). Our data set consists of fourteen input variables related to the bitcoin prices recorded daily from September 1, 2013 to August 31, 2017. Thirteen input variables are related to bitcoin prices, which are date, market price, high price, low price and closing price, and eight technical indicators derived from bitcoin prices. The other is keyword feature value obtained through text mining for social network services (SNS) data. Empirical study shows that DNN outperforms four RNNs in terms of specificity, precision and accuracy. Bidirectional RNN outperforms the other four deep learning models in terms of sensitivity. As a whole, DNN works quite well compared with RNNs.

목차

Abstract
1. Introduction
2. Deep Learning Models
3. Technical Indicators
4. Keyword Feature Value for SNS Data
5. Experimental Results
6. Conclusion
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-047-002155044