메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hong Feng (China Three Gorges University) Gao Zhenjun (China Three Gorges University) Liu Lili (Xi’an University of Technology) Yuan Jianping (Jiangsu University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.11 No.1
발행연도
2018.3
수록면
85 - 96 (12page)
DOI
10.5293/IJFMS.2018.11.1.085

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A numerical method for the calculation of turbulent cavitating flow over submerged objects is proposed in present work. Cavitation is modeled via a single-fluid cavitation model which is derived based on a truncated form of the Rayleigh-Plesset equation and the mixture multiphase theory. The approach has been implemented by user-define function which is widely used in ANSYS FLUENT. Detailed results are presented for sheet cavitation over a submerged hemispherical object in a wide range of cavitation numbers and the cloud cavitation around a Clark-Y hydrofoil. In particular, for the hemispherical body, we compared the surface pressure distribution with experimental data which was available in literature. Later the cloud cavitation structure and its effect on the forces of the hydrofoil were studied. The comparisons between the simulating and experimental results show that present numerical approach has good capability to predict the surface pressure coefficient and the pulsation frequency at cavitation number σ=0.4, 0.55 and 0.65 of the hemispherical body under cavitation conditions. Meanwhile, for the hydrofoil, the proposed approach is sufficiently robust to predict the characteristics of the time-averaged lift and drag coefficients and the evolution of the cloud cavity with time.

목차

Abstract
1. Introduction
2. Mathematical Model and Numerical Approach
3. Results and Discussion
4. Conclusions and Discussion
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-554-001895010