메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강호석 (건국대학교) 김성렬 (건국대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제19권 제2호
발행연도
2018.2
수록면
363 - 370 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 랜섬웨어 탐지는 디지털 콘텐츠 보호를 위한 컴퓨터 보안 분야에서 중요한 주요한 이슈가 되고 있다. 그러나 불행하게도 현재 시그니쳐 기반이나 정적 탐지 모델의 경우 압축 및 암호화 등의 기법을 이용하여 탐지를 피해갈 수 있다. 이를 극복하기 위해 본 논문에서는 RF, SVM, SL, NB 알고리즘 같은 데이터 마이닝 기법을 이용한 다이나믹 랜섬웨어 탐지 시스템을 제안하였다. 이 기법은 실제 소프트웨어를 구동 시켜 동작 행위를 추출해 API 호출 흐름 그래프를 만들고 그 특징을 분석에 이용하였다. 그 후 데이터 정규화, 특징 선택 작업을 진행하였다. 우리는 이러한 분석과정을 더욱더 개선 시켰다. 마지막으로 데이터 마이닝 알고리즘을 적용시켜 랜섬웨어인지를 판별하였다. 제안한 알고리즘의 성능 측정을 위해 더 적합한 추가 샘플 랜섬웨어 데이터를 수집하여 실험하였고 탐지성능이 향상되었음을 보여주었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 시스템 프레임워크
Ⅳ. 실험
Ⅴ. 결론
참고문헌

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0