메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Byung Jae Lee (R&D Center, JNTINC CO. LTD.) Yun Yong Kim (Chungnam National University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.12 No.2
발행연도
2018.2
수록면
259 - 267 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Latex modified concrete (LMC) is used for a bridge deck pavement method that was introduced in Korea in the 2000s, and it is currently the concrete pavement method being used for most highway bridges. It has been recommended that mixing with latex approximately 15% in terms of polymer-cement ratio (P/C ratio) by weight showed no occurrence of cracks with sufficient tensile strength and bond strength of LMC. However, many cracks occur in the actual field mostly due to drying shrinkage of concrete, requiring frequent repair. Therefore, this study examined the feasibility of applying a shrinkage reducing agent(SRA) that could reduce plastic shrinkage cracks at early age as well as drying shrinkage cracks of LMC. Based on the test results, it was confirmed that adding a shrinkage reducing agent could secure the durability without affecting the fresh and hardened properties of LMC. The compression strength test results presented a 1.7–5.7% improvement in strength to the SRA mixture compared to the plain mixture. Length change test results indicated that SRA mix conditions presented more outstanding performance compared to mix conditions with the expansive admixture. The amount of shrinkage reducing agent suitable for achieving performance requirements in length change, crack resistance, chloride ions penetration resistance and scaling resistance, was evaluated as 3% by weight ratio of binding material under the limited condition of the present study.

목차

Abstract
1. Introduction
2. Principle of Shrinkage Reducing Agent
3. Experiment Plan and Method
4. Experimental Results and Discussions
5. Evaluation of Crack Resistance in Field
6. Conclusions
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-532-001807892