메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태곤 (한국생산기술연구원) 신강우 (한국생산기술연구원) 이석우 (한국생산기술연구원)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.35 No.2
발행연도
2018.2
수록면
145 - 149 (5page)
DOI
10.7736/KSPE.2018.35.2.145

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tool wear is an essential parameter in determining tool life, machining quality and productivity. Current or power signals from motor drivers in machine have been used to estimate tool wear. However, accuracy of tool wear estimation was not enough to measure the amount of tool wear. In this study, flank wear of a drill tool was measured using vision sensor module which has zoom lens, CCD camera and image processing technique. The vision module was set up in the machine tool. Therefore, the image was acquired without ejecting the tool from the machine. Image processing techniques were used to define the cutting edge shape, tool diameter, and the wear edge on cutting rips with the proposed measuring algorithm. The automatically calculated wear value was compared with a manually measured value. As a result, the difference between the manual and the automatic methods was below 4.7%. The proposed method has an advantage to decrease the measuring time and improve measuring repeatability because the tool is measured holding chuck in a spindle.

목차

1. 서론
2. 공구 마모 측정 장치 구성
3. 마모 측정 실험 및 결과
4. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-555-001775530