메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강욱 (KAIST) 한상규 (KAIST) 맹성현 (KAIST)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제12호
발행연도
2017.12
수록면
698 - 702 (5page)
DOI
10.5626/KTCP.2017.23.12.698

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
자연 언어 처리(Natural Language Processing) 분야에 심층 신경망(Deep Neural Network)이 소개된 이후, 단어, 문장 등의 의미를 나타내기 위한 분산 표상인 임베딩(Embedding)을 학습하기 위한 연구가 활발히 진행되고 있다. 임베딩 학습을 위한 방법으로는 크게 문맥 기반의 텍스트 모델링 방법과, 기학습된 임베딩을 결합하여 더 긴 텍스트의 분산 표상을 계산하고자 하는 결합 기반의 텍스트 모델링 방법이 있다. 하지만, 기존 결합 기반의 텍스트 모델링 방법은 최적 결합 단위에 대한 고찰 없이 단어를 이용하여 연구되어 왔다. 본 연구에서는 비교 실험을 통해 문서 임베딩 생성에 적합한 결합 기법과 최적 결합 단위에 대해 알아본다. 또한, 새로운 결합 방법인 담화 분석 기반의 결합 방식을 제안하고 실험을 통해 기존의 순차적 결합 기반 신경망 모델 대비 우수성을 보인다.

목차

요약
Abstract
1. 서론
2. 문맥 기반/결합 기반 텍스트 모델링
3. 담화 기반 문장 임베딩 결합 방법
4. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001778939