메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허정환 (한양대학교) 정제창 (한양대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제1호
발행연도
2018.1
수록면
115 - 125 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 머신러닝을 기반으로 한 조기분할 결정 방법을 통하여 High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) 부호화 기기의 속도를 향상시키는 방법을 제안한다. 현재 HEVC에서는 최적의 부호화 효율을 내기 위해 쿼드트리 블록 분할 과정을 수행한다. 이 과정은 부호화기의 높은 계산 복잡도를 요구하기 때문에 블록 구조를 조기에 결정하여 부호화 속도를 향상시키는 방법으로 고속화 연구가 이루어져 왔다. 하지만 스크린 콘텐츠 부호화는 기존의 자연영상에 맞춰진 부호화 과정과 다른 블록 분할 특성을 보이기 때문에 기존의 조기분할 결정 연구를 적용하기 어렵다. 제안하는 방법은 먼저 스크린 콘텐츠 블록을 분류해 낸 다음 다시 블록분할을 결정하는 방법으로 문제를 해결하였고 SCC 공통 실험 조건에서 3.11%의 BD-BR 증가와 평균 42%의 부호화 시간 감소를 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존의 기술 개요
Ⅲ. 제안하는 부호화기 구성
Ⅳ. 실험결과 및 분석
Ⅴ. 결론 및 향후 연구 계획
참고문헌 (References)

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-001725498