메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yunyu Tang (Zhejiang University) Fan Zhu (Zhejiang University) Hao Ma (Zhejiang University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.18 No.1
발행연도
2018.1
수록면
309 - 322 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of 600mm×400mm.

목차

Abstract
I. INTRODUCTION
II. TRANSFORMER STRUCTURE
III. A NOVEL MAGNETIC-CIRCUIT MODEL FOR SOLENOID STRUCTURES
IV. MEASUREMENT OF THE WINGDING RESISTANCE AND CALCULATION OF THE DEVICE LOSSES
V. EXPERIMENTAL RESULTS AND DISCUSSIONS
VI. CONCLUSIONS
REFERENCES

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0