메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Giao N. Pham (Pukyong National University) Ki-Ryong Kwon (Pukyong National University) Eung-Joo Lee (Tongmyong University) Suk-Hwan Lee (Tongmyong University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.11 No.4
발행연도
2017.12
수록면
152 - 159 (8page)
DOI
10.5626/JCSE.2017.11.4.152

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Three-dimensional (3D) printing is applied to many areas of life, but 3D printing models are stolen by pirates and distributed without any permission from the original providers. Moreover, some special models and anti-weapon models in 3D printing must be secured from the unauthorized user. Therefore, 3D printing models must be encrypted before being stored and transmitted to ensure access and to prevent illegal copying. This paper presents a selective encryption algorithm for 3D printing models based on clustering and the frequency domain of discrete cosine transform. All facets are extracted from 3D printing model, divided into groups by the clustering algorithm, and all vertices of facets in each group are transformed to the frequency domain of a discrete cosine transform. The proposed algorithm is based on encrypting the selected coefficients in the frequency domain of discrete cosine transform to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The decrypting error is approximated to be zero. The proposed algorithm provides a better method and more security than previous methods.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. THE PROPOSED ALGORITHM
IV. EXPERIMENTAL RESULTS AND ANALYSIS
V. CONCLUSION
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001718582