메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박정우 (한국과학기술원) 이익진 (한국과학기술원)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2017년도 학술대회
발행연도
2017.11
수록면
1,872 - 1,875 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There are many types of reliability analysis method: linear approximation – first-order reliability method (FORM), and quadratic approximation – second-order reliability method (SORM), and most probable point based dimension reduction method (MPP-based DRM). The reliability analysis using FORM has an advantage in terms of computation efficiency, but the accuracy is not good when the performance function is highly nonlinear and multi-dimensional. In SORM, using the quadratic approximation, the computational accuracy is higher than FORM but the efficiency is lower. The MPP-based DRM, the most recently proposed method, has advantages of the FORM and SORM at the same time in the efficiency and the accuracy. However, the reliability analysis using the MPP-based DRM does not consider the cross-term of the performance function, so that it cannot obtain higher accuracy.
The main objective of this paper is to develop an accurate methodology for the MPP-based DRM by using the subspaces considering cross-term. When using the general bivariate DRM, it is possible to increase the accuracy because many cross-terms can be considerable, but the efficiency becomes lower as the dimension of the performance function increases. For this reason, subspace is applied by considering the important cross-term in the general bivariate DRM, thereby minimizing the efficiency reduction. The accuracy improvement of the probability of failure estimation is demonstrated with several numerical examples.

목차

Abstract
1. 서론
2. 신뢰도 해석
3. 부분공간을 이용한 최대가능손상점 기반 차원감소법
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0