메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Inki Yoo (연세대학교) Jungju Park (연세대학교) Jeonghoon Mo (연세대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제43권 제6호
발행연도
2017.12
수록면
435 - 450 (16page)
DOI
10.7232/JKIIE.2017.43.6.435

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the advancement of mobile phone technologies, recent mobile phones such as smartphones have become more sophisticated. The purpose of our study is to grasp the importance of the mobile phone features and the satisfaction of each feature in the online reviews. In order to identify the importance and satisfaction of each feature, various text analysis methods such as term frequency analysis and network analysis were used to quantify the importance of features and the degree of consumers’ emotions in the online reviews. And, we compare the results with actual survey results using conjoint analysis and analytic hierarchy process analysis. As a result, the most important feature in the conjoint analysis method was the “Display Resolution” followed by “Display Size.” In contrast to the conjoint analysis method, the most important feature in the AHP method was “Price” followed by “Internal Memory.” The highest correlation coefficient with conjoint analysis is 0.465, which is the correlation coefficient between STF and conjoint analysis. In contrast to the above conjoint analysis results, we found that there is almost no correlation between the three methods and AHP results. Second, we evaluate satisfaction score of each feature from the online reviews. As a result, the mobile phone features with highest satisfaction value in cluster 1 are “Camera Resolution” and “Display Resolution.” Also, the mobile phone feature with highest satisfaction value in cluster 2 is “Camera Resolution.”

목차

1. Introduction
2. Related Works
3. Identification of Key Features
4. Validation of Identified Key Features
5. The Satisfaction Scores for Key Features
6. Conclusions and Future Works
References

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-001537617