메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신현준 (남서울대학교) 오창헌 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제21권 제11호
발행연도
2017.11
수록면
2,037 - 2,042 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트 공장은 미리 입력된 프로그램에 의해 생산시설이 수동적으로 움직이는 공장 자동화 작업 방식과는 달리, 생산 설비 스스로 작업 방식을 결정하여야 한다. 생산 설비 스스로 작업 방식을 결정이라 함은, 이를테면 제조 현장에서 설비의 노후, 문제 발생 예측, 제품의 불량 검출 등과 같은 이상 징후가 발생할 시 이를 조기에 발견한 후 스스로 문제를 해결하는 것을 의미한다. 본 논문에서는 제조 현장의 제조 공정 이상 징후 감지를 위해 대기행렬을 이용한 제조공정 모델링을 제시하고 해당 모델링에서 이상 징후를 기계학습 기술 중 하나인 SVM을 이용하여 이를 감지하도록 한다. 해당 대기행렬을 M/D/1을 사용하였으며, μ, λ, ρ를 기반으로 컨베이어 벨트 제조 시스템을 모델링하였다. SVM을 이용하여 ρ의 변화량을 통해 이상 징후를 감지했다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제조 현장의 비정상 데이터 분류를 위한 기계학습
Ⅳ. 모의실험
Ⅴ. 결론
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001532695