메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kouki Tsuji (Kyushu Institute of Technology) Huimin Lu (Kyushu Institute of Technology) Joo Kooi Tan (Kyushu Institute of Technology) Hyoungseop Kim (Kyushu Institute of Technology) Kazue Yoneda (University of Occupational and Environmental Health) Fumihiro Tanaka (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
1,449 - 1,454 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Circulating tumor cells (CTCs) is a useful biomarker for cancer metastasis. The blood from a cancer patient is analyzed by a fluorescence microscope. Each case takes a large number of images, which usually have a lot of cell regions. Thus, analyzing the images is hard work for pathologists, and misdiagnosis may happen. In this paper, we develop an automatic CTCs identification method for fluorescence microscopy images. The proposed method consists of three steps. First, we extract cell regions in images using filtering methods. Second, we compute features of each CTC candidate regions. Finally, we identify the CTCs using AdaBoost algorithm. And we analyze the features to know which ones are effective for characterizing CTCs and normal cells. We apply the proposed method to 5040 microscopy images, and evaluate the effectiveness of our method by using leave-one-out cross validation. We achieve a true positive rate of 97.30 [%] and a false positive rate of 12.82 [%].

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001428044