메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양동헌 (과학기술연합대학원대학교) 여나영 (과학기술연합대학원대학교) 마평수 (과학기술연합대학원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제11호
발행연도
2017.11
수록면
632 - 640 (9page)
DOI
10.5626/KTCP.2017.23.11.632

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
일사량은 태양광 발전시스템의 전력 생산량에 가장 큰 영향을 미치는 기상요소이며, 다른 기상요소들과 달리 기상청의 일기예보를 통해 제공받을 수 없다. 따라서 효율적인 태양광 발전시스템 운용을 위해 일사량 예측에 관한 연구는 필수적이다. 본 연구는 기상정보 데이터 기반의 Dynamic Piecewise 일사량 예측 모델을 제안한다. Dynamic Piecewise 일사량 예측 모델은 유사한 태양고도와 유사한 날씨의 데이터 조각들로 나누어 학습하기 위해, 예측하는 시점의 태양고도와 운량을 기준으로 전체 데이터를 동적으로 나눈 후 기계학습 알고리즘인 다중 선형회귀 알고리즘으로 학습하여 일사량을 예측하는데 사용된다. 본 연구의 성능을 검증하기 위해 제안 모델인 Dynamic Piecewise 일사량 예측 모델과 이전 연구에서 제안한 모델, 기존의 상관관계식 기반 일사량 예측 모델에 동일한 기상정보 데이터 셋을 적용하여 비교하였으며, 비교결과 본 연구에서 제안한 모델이 가장 정확한 일사량 예측 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 기상정보 데이터 전처리
4. Dynamic Piecewise 일사량 예측 모델
5. 비교 기준 모델(Ref.(2))
6. 성능 비교 및 검증
7. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0