메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이다빛 (가톨릭대학교) 이희재 (가톨릭대학교) 박상훈 (가톨릭대학교) 이상국 (가톨릭대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.9
발행연도
2017.9
수록면
887 - 892 (6page)
DOI
10.5626/JOK.2017.44.9.887

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
뇌-컴퓨터 인터페이스는 정신 작업 동안 다채널에서 생성된 뇌파의 신호를 측정, 분석하여 컴퓨터를 제어하거나 의사를 전달하는 기술이다. 이때 최적의 뇌파 채널 선택은 뇌-컴퓨터 인터페이스의 편의성과 속도뿐만 아니라 정확도 향상을 위해 필요하다. 최적의 채널은 중복 채널들 또는 노이즈 채널들을 제거함으로써 얻는다. 이 논문에서는 최적 뇌파 채널을 선택하기 위해 이중 filter-기반의 채널 선택 방법을 제안한다. 제안한 방법은 먼저 채널들 간의 중복성을 제거하기 위해 spearman"s rank correlation을 사용하여 중복 채널들을 제거한다. 그 뒤, F score를 이용하여 채널과 클래스 라벨 간의 적합성을 측정하여 상위 m개의 채널들만을 선택한다. 제안한 방법은 클래스 라벨과 관련되고 중복이 없는 채널들을 사용함으로써 좋은 분류 정확도를 이끌어 낼 수 있다. 제안한 채널 선택 방법은 채널의 수를 상당히 줄임과 동시에 평균 분류 정확도를 향상시켰다.

목차

요약
Abstract
1. 서론
2. 실험 방법
3. 실험 결과
4. 결론 및 향후 연구
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0