메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Anh Tuan Nguyen (Le Quy Don Technical University) Jae-Hung Han (KAIST) Anh Tu Nguyen (National Research Tomsk Polytechnic University)
저널정보
한국항공우주학회 International Journal of Aeronautical and Space Sciences International Journal of Aeronautical and Space Sciences Volume.18 Number.3
발행연도
2017.9
수록면
474 - 484 (11page)
DOI
10.5139/IJASS.2017.18.3.474

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure’s responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

목차

Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-558-001343122