메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제5호
발행연도
2014.10
수록면
1,127 - 1,135 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Genome-wide association studies (GWAS) are designed to discover genetic vari-ants such as single nucleotide polymorphisms (SNPs) that are associated with human complex traits. Although there is an increasing interest in the application of GWAS methodologies to population-based cohorts, many published GWAS have adopted a case-control design, which raise an issue related to a sampling bias of both case and control samples. Because of unequal selection probabilities between cases and controls, the samples are not representative of the population that they are purported to represent. Therefore, non-random sampling in case-control study can potentially lead to inconsistent and biased estimates of SNP-trait associations. In this paper, we pro-posed inverse-probability of sampling weights based on disease prevalence to eliminate a case-control sampling bias in estimation and testing for association between SNPs and quantitative traits. We apply the proposed method to a data from the Korea Asso-ciation Resource project and show that the standard estimators applied to the weighted data yield unbiased estimates.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001375479