메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제5호
발행연도
2014.10
수록면
971 - 986 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
동시에 여러 개의 가설검정 수행시 귀무가설이 참일 경우 귀무가설을 기각할 확률이 커지는 문제가 발생한다. 이러한 다중검정 문제 해결을 위해 여러 연구에서는 가설검정시 필요한 집단별 오류율(FWER; family-wise error rate), 위발견율 (FDR; false discovery rate) 또는 위비발견율 (FNR;false nondiscovery rate) 과 통계량을 고려하여 검정력을 높이고자 하였다. 본 연구에서는 T 통계량, 수정된 T 통계량, 그리고 LPE (local pooled error) 통계량 기반 P값을 이용한 Bonferroni(1960) 방법, Holm (1979) 방법, Benjamini와 Hochberg (1995) 방법과 Benjamini와 Yekutieli(2001) 방법 그리고 Z 통계량 기반 Sun과 Cai (2007) 방법을 고찰하고 모의실험을 통해 다중검정 능력을 비교하였다. 또한 실제 데이터로 애기장대 유전자 발현 데이터에 대해 여러 가지 다중검정법을 통해 유의한 유전자들을 선별하였다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001375353