메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제4호
발행연도
2014.8
수록면
881 - 891 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
그래프모형(graphical model)은 확률변수들간의 조건부독립성(conditional independence)을 시각적인 네트워크형태로 표현할 수 있기 때문에, 정보학 (bioinformatics)이나 사회관계망 (socialnetwork) 등 수많은 변수들이 서로 연결되어 있는 복잡한 확률 시스템에 대한 직관적인 도구로 활용될 수 있다. 그래프 LASSO (graphical least absolute shrinkage and selection operator)는 고차원의 자료에 대한 가우스 그래프 모형 (Gaussian graphical model)의 추정에서 과대적합 (overfitting)을 방지하는데에 효과적인 것으로 알려진 방법이다. 본 논문에서는 그래프 LASSO 추정에서 매우 중요한 문제인 모형선택에 대하여 고려한다. 특히 여러가지 모형선택기준을 모의실험을 통해 비교하며 실제 금융 자료를 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001375262