메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제2호
발행연도
2014.4
수록면
365 - 371 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 마이닝 기법 중에서 연관성 규칙은 하나의 거래나 사건에 포함되어 있는 항목들의 관련성을 파악하기 위한 탐색적 자료 분석 방법이다. 이 기법은 지지도, 신뢰도, 향상도 등과 같은 흥미도 측도들을 이용하여 연관성 규칙을 생성한다. 일반적인 연관성 규칙에서는 최소 지지도를 만족하는 빈발항목집합을 생성한 후 최저 신뢰도를 만족하는 것을 연관성 규칙으로 채택하게 된다. 이 때 규칙 여부를 결정하기 위해 가장 많이 사용되는 신뢰도는 고려하는 항목의 순서가 바뀌게 되면 그 값이 달라지는 비대칭적 측도가 되는 동시에 항상 양의 값을 가진다. 따라서 신뢰도 값의 크기로는 양의 연관성이 있는지, 아니면 음의 연관성이 있는지를 알 수 없다. 본 논문에서는 이러한 문제를 극복하기 위해 분류 모형 구축에 유용한 신뢰도 측도들을 소개하고, 신뢰도들 간의 비교 분석을 통해 유용성을 평가하였다. 그 결과, 인과적 확인 신뢰도가 연관성의 방향을 보다 정확하게 나타내고 있다는 사실을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001374770