메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제1호
발행연도
2014.2
수록면
97 - 106 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅 데이터 기술의 발전은 다변화된 현대 사회를 보다 정확하게 예측하고 효율적으로 작동하도록정보를 제공하는 동시에 과거에는 불가능 했던 기술을 가능케 하였다. 이러한 빅 데이터 분석 기법은국가 차원에서의 사회, 경제, 정치, 문화, 과학 기술 등 여러 분야에 활용될 수 있다. 빅 데이터 분석을 위해서는 먼저 데이터 마이닝 기술로 방대한 양의 데이터 속에서 가치 있는 정보를 찾는 것이 선행되어야 하는데, 빅 데이터와 관련된 데이터 마이닝 기법으로는 텍스트 마이닝, 평판 분석, 군집 분석,연관성 규칙 등이 있다. 본 논문에서는 데이터 마이닝 기법 중에서 많이 활용되고 있는 연관성 규칙의평가 기준으로 코사인 순수 신뢰도를 제안한 후, Piatetsky-Shapiro가 제안한 흥미도 측도의 기준에대한 충족여부를 점검하는 동시에 여러 가지 특성을 살펴보았다. 또한 예제를 통하여 고찰한 결과, 기존의 신뢰도와 코사인 유사성 측도는 모두 양의 값을 가지므로 연관성의 방향을 알 수 없어서 그 값만으로는 양의 연관성이 있는지 아니면 음의 연관성이 있는지를 알 수 없었다. 그러나 본 논문에서 제안한 코사인 순수 신뢰도는 그 부호에 의해 연관성 규칙의 방향을 알 수 있으므로 신뢰도와 코사인 유사성 측도가 가지고 있는 약점을 보완할 수 있는 측도라는 사실을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001374523