The Bradley-Terry model is widely used for analysis of pairwise preference data. We explain that the popularity of Bradley-Terry model is gained due to not only easy com-putation but also some nice asymptotic properties when the model is misspecified. For information retrieval required to analyze big ranking data, we propose to use a pseudo likelihood based on the Bradley-Terry model even when the true model is different from the Bradley-Terry model. We justify using the Bradley-Terry model by proving that the estimated ranking based on the proposed pseudo likelihood is consistent when the true model belongs to the class of Thurstone models, which is much bigger than the Bradley-Terry model.