메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제3호
발행연도
2013.6
수록면
495 - 504 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
진화 알고리즘 계산 지능을 이용한 예측 방법이 다목적 최적화 문제에서 많이 이용되고 있고, 이러 한 방법들은 많은 근사 파레토 최적해들을 좀 더 정확하게 생성하기 위해서 개선되고 있다. 본 논문은 다목적 최적화 문제에서 서포트 벡터기계를 이용하여 근사 파레토 프런티어를 찾는 방법을 제안한다. 또한 제안된 방법과 진화 알고리즘을 결합한 것이 파레토 프런티어를 더 잘 근사시킨다는 것과 두 개 혹은 세 개의 목적함수를 가진 의사결정은 제안된 방법으로 파레토 프런티어를 시각화한 것에 근거하여 더 쉽게 수행된다는 것을 보인다. 마지막으로 몇 개의 수치예제를 통해 제안된 방법의 효율성에 대해 보일 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001383468