메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제2호
발행연도
2013.4
수록면
267 - 275 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 마이닝 기법들 중에서도 연관성 규칙은 가장 최근에 개발된 기법으로 대용량 데이터베이스에서 각 항목들 간의 관련성을 찾아내며, 두 항복간의 관계를 명확히 수치화함으로써 두 개 이상의 항목간의 관련성을 표시하여 주기 때문에 현장에서 직접 적용이 가능하다. 일반적으로 연관성 규칙 생성 여부를 판단할 때, 각 항목간의 연관성을 반영하는 기준인 지지도, 신뢰도, 향상도 등의 흥미도 축도들의 평가 기준을 정하기 위해 반복적으로 조정 과정을 거쳐야 한다. 본 논문에서는 이러한 문제를 해결하기 위해 연관성 평가기준 모두를 일반적으로 많이 활용되고 있는 비선형 회귀모형에 적요하여 연관성 규칙의 수를 추정하는 방안을 강구하였다. 또한 분산팽창계수를 이용하여 다중공선성 문제를 진단하는 동시에 분산분석 결과와 수정 결정계수를 이용하여 각 모형의 기여도를 비교하여 가장 바람직한 회귀 모형을 구하였다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001383246