메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제22권 제6호
발행연도
2011.12
수록면
1,113 - 1,121 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 여러 분야에서 다양한 데이터 마이닝 방법들을 현업에 적용하고 있는 추세이다. 가장 많이 활용되고 있는 데이터 마이닝 기법 중의 하나인 연관성 규칙은 대용량 데이터베이스에 내재되어 있는 항목들 간의 관련성을 수치화하여 그들 간의 연관 정도를 나타내는 기법이다. 의미 있는 연관성 규칙을 생성하기 위해 지지도, 신뢰도, 향상도 등의 측도가 가장 기본적으로 활용되고 있다. 본 논문에서는 군집 분석이나 다차원 분석법에서 많이 활용되고 있는 유사성 측도들 중에서 동시 비 발생 빈도를 고려한 유사성 측도를 연관성 평가 기준으로 제안한 후, 예제를 통하여 기존의 신뢰도 및 지지도와 비교함으로써 그 유용성을 알아보았다. 모의실험 결과를 종합해볼 때, 동시 발생 빈도 또는 동시 비 발생 빈도가 증가하면 본 논문에서 고려한 모든 유사성 측도들은 지지도 및 신뢰도와 마찬가지로 증가하며, 불일치 계수의 값이 증가하면 이 측도들은 감소하게 된다는 사실을 알 수 있었다. 또한 이들 유사성 측도들은 지지도 및 신뢰도와 매우 유의한 상관관계가 있는 것으로 나타났으며, 전항과 후항이 바뀌더라도 값의 변화가 없기 때문에 신뢰도 보다 더 바람직한 연관성 규칙 평가 기준이라고 할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001381535