메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정혜욱 (성균관대학교) 이승 (성균관대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제17권 제9호
발행연도
2017.9
수록면
132 - 144 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대용량 지문 데이터베이스를 사용하는 지문인식 시스템에서 처리 속도와 정확성을 높이기 위해서는 지문을 클래스별로 카테고리화하는 지문분류 기술을 사용해야 한다. 지문분류 방법은 지문 융선으로부터 특징을 추출하고 지문 융선의 흐름과 형상에 따라 정의되어 있는 클래스를 기준으로 학습 및 추론 기법을 이용하여 분류한다. 기존에는 종이에 회전 날인하여 습득된 NIST 데이터베이스를 이용한 연구가 많이 수행되었지만, 지문인식 입력 센서를 이용한 자동화된 시스템이 보편화됨에 따라 FVC에서 공개한 지문 데이터와 같이 센서로부터 입력된 지문 이미지를 이용한 연구가 증가하고 있으며, 최근에는 딥러닝을 이용한 지문분류 방법이 제안되고 있다. 본 논문에서는 지문분류를 위한 특징 추출 및 분류 기술의 동향을 살펴보고 분류 성능을 비교한다. 또한 센서 기반 지문 이미지의 다양한 품질을 고려한 지문분류 기술 연구의 필요성에 대하여 정리하고, 딥러닝 기술을 적용한 지문분류 방법을 분석해 봄으로써 지속적으로 사용이 증가되고 있는 대용량 지문 데이터베이스의 분류 기술 연구에 대한 성능향상에 보탬이 되고자 한다.

목차

요약
Abstract
I. 서론
II. 지문의 특징 추출 기술
III. 지문의 분류 기술
IV. 지문분류 기술의 성능 비교
V. 딥러닝을 이용한 최신 지문분류 기술
VI. 결론
참고문헌

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0